A Dynamic View of ATP-coupled Functioning Cycle of Hsp90 N-terminal Domain

SCIENTIFIC REPORTS(2015)

引用 29|浏览13
暂无评分
摘要
Heat-shock protein 90 (Hsp90) is one of the most important chaperones involved in multiple cellular processes. The chaperoning function of Hsp90 is intimately coupled to the ATPase activity presented by its N-terminal domain. However, the molecular mechanism for the ATP-dependent working cycle of Hsp90 is still not fully understood. In this study, we use NMR techniques to investigate the structural characteristics and dynamic behaviors of Hsp90 N-terminal domain in its free and AMPPCP (ATP analogue) or ADP-bound states. We demonstrated that although AMPPCP and ADP bind to almost the same region of Hsp90, significantly different effects on the dynamics behaviors of the key structural elements were observed. AMPPCP binding favors the formation of the active homodimer of Hsp90 by enhancing the slow-motion featured conformational exchanges of those residues (A117–A141) within the lid segment (A111–G135) and around region, while ADP binding keeps Hsp90 staying at the inactive state by increasing the conformational rigidity of the lid segment and around region. Based on our findings, a dynamic working model for the ATP-dependent functioning cycle of Hsp90 was proposed.
更多
查看译文
关键词
functioning cycle,atp-coupled,n-terminal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要