Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: regulation of lipid metabolism via PANDER-AKT pathway.

Biochemical and biophysical research communications(2015)

引用 36|浏览1
暂无评分
摘要
This study aimed to investigate the mechanism by which aerobic swimming training prevents high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD). Forty-two male C57BL/6 mice were randomized into normal-diet sedentary (ND; n = 8), ND exercised (n = 8), high-fat diet sedentary (HFD; n = 13), and HFD exercised groups (n = 13). After 2 weeks of training adaptation, the mice were subjected to an aerobic swimming protocol (60 min/day) 5 days/week for 10 weeks. The HFD group exhibited significantly higher mRNA levels of fatty acid transport-, lipogenesis-, and β-oxidation-associated gene expressions than the ND group. PANDER and FOXO1 expressions increased, whereas AKT expression decreased in the HFD group. The aerobic swimming program with the HFD reversed the effects of the HFD on the expressions of thrombospondin-1 receptor, liver fatty acid-binding protein, long-chain fatty-acid elongase-6, Fas cell surface death receptor, and stearoyl-coenzyme A desaturase-1, as well as PANDER, FOXO1, and AKT. In the HFD exercised group, PPARα and AOX expressions were much higher. Our findings suggest that aerobic swimming training can prevent NAFLD via the regulation of fatty acid transport-, lipogenesis-, and β-oxidation-associated genes. In addition, the benefits from aerobic swimming training were achieved partly through the PANDER-AKT-FOXO1 pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要