The potential use of lapatinib-loaded human serum albumin nanoparticles in the treatment of triple-negative breast cancer.

International Journal of Pharmaceutics(2015)

引用 42|浏览15
暂无评分
摘要
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited treatment options. However, the shared feature of epidermal growth factor receptor (EGFR) expression in TNBC offers the opportunity for targeted molecular therapy for this breast cancer subtype. Previous studies have indicated that lapatinib, a selective small-molecular dual-tyrosine kinase inhibitor of HER2 and EGFR, is effective in reducing cancer progression and metastasis, indicating that it might be a candidate for TNBC treatment. However, its poor water solubility, low and variable oral absorption, and large daily dose all limit the clinical use of lapatinib. In this study, we developed human serum albumin (HSA) nanoparticles loaded with lapatinib for intravenous administration to overcome these disadvantages and enhance its efficacy against TNBC. 4T1 cells (a murine TNBC cells) were selected as the cell model because their growth and metastatic spread are very close to those of human breast cancer cells. Lapatinib-loaded HSA nanoparticles (LHNPs) were prepared by Nab technology. LHNPs displayed cytotoxicity similar to the free drug but exhibited superior capacity to induce early apoptosis in 4T1 monolayer cells. Importantly, LHNPs showed improved penetration and inhibition effects in tumor spheroids compared to lapatinib solution (LS). Pharmacokinetic investigations revealed that HSA nanoparticles (i.v.) effectively increased the accumulation of lapatinib in tumor tissue at 2.38 and 16.6 times the level of LS (i.v.) and Tykerb (p.o.), respectively. Consequently, it had markedly better suppression effects both on primary breast cancer and lung metastasis in tumor-bearing mice compared to the commercial drug Tykerb. The improved anti-tumor efficacy of LHNPs may be partly attributed to its close binding to SPARC, which is widely present in the extracellular matrix of tumor tissue. These results demonstrated that LHNPs might be a promising anti-tumor agent for TNBC.
更多
查看译文
关键词
Lapatinib,HSA nanoparticle,Triple negative breast cancer,4T1 cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要