Effects of hydroxylation and silanization on the surface properties of ZnO nanowires.

ACS applied materials & interfaces(2015)

引用 11|浏览3
暂无评分
摘要
Silanization is commonly used to form bonds between inorganic materials and biomolecules as a step in the surface preparation of solid-state biosensors. This work investigates the effects of silanization with amino-propyldiethoxymethylsilane on hydroxylated sidewalls of zinc oxide (ZnO) nanowires (NWs). The surface properties and electrical characteristics of NWs are analyzed by different techniques after their hydroxylation and later silanization. Contact angle measurements reveal a stronger hydrophobic behavior after silanization, and X-ray photoelectron spectroscopy (XPS) results show a reduction of the surface dipole induced by the replacement of the hydroxyl group with the amine terminal group. The lower work function obtained after silanization in contact potential measurements corroborates the attenuation of the surface dipole observed in XPS. Furthermore, the surface band bending of NWs is determined from surface photovoltage measurements upon irradiation with UV light, yielding a 0.5 eV energy in hydroxylated NWs, and 0.18 eV, after silanization. From those results, a reduction in the surface state density of 3.1 × 10(11) cm(-2) is estimated after silanization. The current-voltage (I-V) characteristics measured in a silanized single NW device show a reduction of the resistance, due to the enhancement of the conductive volume inside the NW, which also improves the linearity of the I-V characteristic.
更多
查看译文
关键词
X-ray photoemission spectroscopy,ZnO nanowires,contact potential difference,hydroxylation,silanization,surface band bending,surface photovoltage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要