Lab-On-A-Chip Magneto-Immunoassays: How To Ensure Contact Between Superparamagnetic Beads And The Sensor Surface

BIOSENSORS-BASEL(2013)

引用 14|浏览3
暂无评分
摘要
Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force mu m-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR) effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.
更多
查看译文
关键词
lab-on-a-chip, immuno assay, superparamagnetic beads, granular GMR, microfluidics, biosensors, magnetoresistive sensors, mu TAS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要