Gene dosage in the dysbindin schizophrenia susceptibility network differentially affect synaptic function and plasticity.

JOURNAL OF NEUROSCIENCE(2015)

引用 42|浏览14
暂无评分
摘要
Neurodevelopmental disorders arise from single or multiple gene defects. However, the way multiple loci interact to modify phenotypic outcomes remains poorly understood. Here, we studied phenotypes associated with mutations in the schizophrenia susceptibility gene dysbindin (dysb), in isolation or in combination with null alleles in the dysb network component Blos1. In humans, the Blos1 ortholog Bloc1s1 encodes a polypeptide that assembles, with dysbindin, into the octameric BLOC-1 complex. We biochemically confirmed BLOC-1 presence in Drosophila neurons, and measured synaptic output and complex adaptive behavior in response to BLOC-1 perturbation. Homozygous loss-of-function alleles of dysb, Blos1, or compound heterozygotes of these alleles impaired neurotransmitter release, synapse morphology, and homeostatic plasticity at the larval neuromuscular junction, and impaired olfactory habituation. This multiparameter assessment indicated that phenotypes were differentially sensitive to genetic dosages of loss-of-function BLOC-1 alleles. Our findings suggest that modification of a second genetic locus in a defined neurodevelopmental regulatory network does not follow a strict additive genetic inheritance, but rather, precise stoichiometry within the network determines phenotypic outcomes.
更多
查看译文
关键词
BLOC-1,dysbindin,olfactory habituation,schizophrenia,synaptic vesicle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要