Fragment-based drug discovery of 2-thiazolidinones as BRD4 inhibitors: 2. Structure-based optimization.

JOURNAL OF MEDICINAL CHEMISTRY(2015)

引用 50|浏览44
暂无评分
摘要
The signal transduction of acetylated histone can be processed through a recognition module, bromodomain. Several inhibitors targeting BRD4, one of the bromodomain members, are in clinical trials as anticancer drugs. Hereby, we report our efforts on discovery and optimization of a new series of 2-thiazolidinones as BRD4 inhibitors along our previous study. In this work, guided by crystal structure analysis, we reversed the sulfonamide group and identified a new binding mode. A structure-activity relationship study on this new series led to several potent BRD4 inhibitors with IC50 of about 0.05-0.1 mu M in FP binding assay and GI50 of 0.1-0.3 mu M in cell based assays. To complete the lead-like assessment of this series, we further checked its effects on BRD4 downstream protein c-Myc, investigated its selectivity among five different bromodomain proteins, as well as the metabolic stability test, and reinforced the utility of 2-thiazolidinone scaffold as BET bromodomain inhibitors in novel anticancer drug development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要