Structure-biological function relationship extended to mitotic arrest-deficient 2-like protein Mad2 native and mutants-new opportunity for genetic disorder control.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2014)

引用 3|浏览5
暂无评分
摘要
Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN) and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2) to active closed (C-Mad2) conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20) or Mad1) were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR) method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided) and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q(2) (0.53-0.65) and fitted correlation r(2) (0.82-0.90). Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.
更多
查看译文
关键词
chromosomal instability prediction,mitotic arrest-deficient protein Mad2,computational mutagenesis,quantitative structure-activity relationship (QSAR)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要