Mathematic models and material removal characteristics of multigesture jetting using magnetorheological fluid.

APPLIED OPTICS(2014)

引用 12|浏览2
暂无评分
摘要
This paper investigates the removal characteristics of the multigesture jetting of magnetorheological jet polishing (MJP). It discusses four main jetting models that satisfy precise polishing, which are complemented by an integrated polishing tool. Based on fluid impact dynamics theory, the paper analyzes the characteristics of abrasives in flowing slurry, such as velocities and stresses, during impinging. Together with the material removal mechanism, the paper establishes mathematical models for material removal for different jetting gestures. Experiments conducted on K9 optical glasses indicate that the actual polishing spots are consistent with the theoretical models. The removal capabilities of each jetting model have been investigated, including removal shape, power spectral density, removal track, and surface roughness. Using the tilted and rotating jetting models, a unimodal footprint could be obtained. The experiments also concluded that the tilted jetting model has a high removal capability and oblique jetting allowed us to easily obtain low-surface roughness, 1.46 nm for a 45 degrees incident angle. (C) 2014 Optical Society of America
更多
查看译文
关键词
polishing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要