A novel calcium-dependent mechanism of acquired resistance to IGF-1 receptor inhibition in prostate cancer cells.

ONCOTARGET(2014)

引用 6|浏览2
暂无评分
摘要
Inhibition of the mitogenic insulin-like growth factor receptor 1 (IGF-1R) signaling axis is a compelling treatment strategy for prostate cancer. Combining the IGF-1R inhibitor ganitumab (formerly AMG 479) with standard of care androgen-deprivation therapy greatly delays prostate cancer recurrence in xenograft models; however, a significant proportion of these tumors ultimately acquire resistance to ganitumab. Here we describe the development of a stable and reproducible ganitumab-resistant VCaP human prostate cancer cell derivative termed VCaP/GanR to investigate the mechanism of acquired resistance to IGF-1R inhibition. Unlike parental VCaP, VCaP/GanR did not undergo apoptosis following ganitumab treatment. VCaP/GanR did not express increased levels of IGF-1R, insulin receptor, or phospho-AKT compared to parental VCaP. VCaP/GanR exhibited increased levels of phospho-S6 indicative of increased mTOR activity. However, acquired resistance to ganitumab was not dependent on increased mTOR activity in VCaP/GanR. Phospho-proteomic arrays revealed alterations in several calcium-regulated signaling components in VCaP/GanR compared to VCaP. Reduction of intracellular calcium using cell-permeable calcium-specific chelators restored ganitumab sensitivity to VCaP/GanR through inhibition of cell-cycle progression. These data suggest a new mechanism of resistance to IGF-1R inhibition involving calcium-mediated proliferation effects. Such pathways should be considered in future clinical studies of IGF-1R inhibitors in prostate cancer.
更多
查看译文
关键词
insulin-like growth factor receptor 1,ganitumab,AMG 479,phospho-proteomics,VCaP,castration resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要