Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture.

Fertility and Sterility(2014)

引用 52|浏览6
暂无评分
摘要
To determine the genetic and epigenetic stability of human spermatogonial stem cells (SSCs) during long-term culture.Experimental basic science study.Reproductive biology laboratory.Cryopreserved human testicular tissue from two prostate cancer patients with normal spermatogenesis.None.Testicular cells before and 50 days after culturing were subjected to ITGA6 magnetic-activated cell sorting to enrich for SSCs. Individual spermatogonia were analyzed for aneuploidies with the use of single-cell 24-chromosome screening. Furthermore, the DNA methylation statuses of the paternally imprinted genes H19, H19-DMR (differentially methylated region), and MEG3 and the maternally imprinted genes KCNQ1OT1 and PEG3 were identified by means of bisulfite sequencing.Aneuploidy screening showed euploidy with no chromosomal abnormalities in all cultured and most noncultured spermatogonia from both patients. The methylation assays demonstrated demethylation of the paternally imprinted genes H19, H19-DMR, and MEG3 of 11%-28%, 43%-68%, and 18%-26%, respectively, and increased methylation of the maternally imprinted genes PEG 3 and KCNQ1OT of 13%-50% and 30%-38%, respectively, during culture.In the current culture system for human SSCs propagation, genomic stability is preserved, which is important for future clinical use. Whether the observed changes in methylation status have consequences on functionality of SSCs or health of offspring derived from transplanted SSCs requires further investigation.
更多
查看译文
关键词
Human spermatogonial stem cell,testicular culture,genomic stability,aneuploidy screening,epigenetic imprinting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要