Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses.

Vaccine(2014)

引用 20|浏览4
暂无评分
摘要
Since recent data suggest that nanoparticles and modified vaccinia ankara (MVA) vectors could play a pivotal role in HIV-1 therapeutics and vaccine design, in an ex vivo model of human monocyte-derived dendritic cells (MDDCs), we compared two different loading strategies with HIV-1 vaccine vehicles, either viral or synthetic derived. We used polylactic acid (PLA) colloidal biodegradable particles, coated with HIV Gag antigens (p24), and MVA expressing Gag (rMVA-gag and rMVA-gag/trans membrane) or Tat, Nef and Rev genes (rMVA tat+rev and rMVA nef). PLA-p24 captured by MDDCs from HIV-1 individuals induced a slight degree of MDDC maturation, cytokine and chemokine secretion and migration towards a gradient of CCL19 chemokine and highly increased HIV-specific CD8(+) T-cell proliferation compared with p24 alone. After complete maturation induction of PLA-p24-pulsed MDDCs, maximal migration towards a gradient of CCL19 chemokine and induction of HIV-specific T-cell proliferation (two-fold higher for CD4(+) than CD8(+)) and cytokine secretion (IFN-γ and IL-2) in the co-culture were observed. Upon exposure to MVA-gag, MDDCs produced cytokines and chemokines and maintained their capacity to migrate to a gradient of CCL19. MDDCs infected with MVA-gag and MVA-gag trans-membrane were able to induce HIV-specific CD8(+) proliferation and secretion of IFN-γ, IL-2, IL-6 and TNF-α. We conclude that both HIV antigens loading strategies (PLA-p24 nanoparticles or MVA expressing HIV genes) induce HIV-1-specific T-cell responses, which are able to kill autologous gag-expressing cells. Thus, they are plausible candidates for the development of anti-HIV vaccines.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要