Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat ( Triticum aestivum L .)

BMC plant biology(2014)

引用 132|浏览7
暂无评分
摘要
Background Grain yield in wheat is a polygenic trait that is influenced by environmental and genetic interactions at all stages of the plant’s growth. Yield is usually broken down into three components; number of spikes per area, grain number per spike, and grain weight (TGW). In polyploid wheat, studies have identified quantitative trait loci (QTL) which affect TGW, yet few have been validated and fine-mapped using independent germplasm, thereby having limited impact in breeding. Results In this study we identified a major QTL for TGW, yield and green canopy duration on wheat chromosome 6A of the Spark x Rialto population, across 12 North European environments. Using independent germplasm in the form of BC 2 and BC 4 near isogenic lines (NILs), we validated the three QTL effects across environments. In four of the five experiments the Rialto 6A introgression gave significant improvements in yield (5.5%) and TGW (5.1%), with morphometric measurements showing that the increased grain weight was a result of wider grains. The extended green canopy duration associated with the high yielding/TGW Rialto allele was comprised of two independent effects; earlier flowering and delayed final maturity, and was expressed stably across the five environments. The wheat homologue ( TaGW2 ) of a rice gene associated with increased TGW and grain width was mapped within the QTL interval. However, no polymorphisms were identified in the coding sequence between the parents. Conclusion The discovery and validation through near-isogenic lines of robust QTL which affect yield, green canopy duration, thousand grain weight, and grain width on chromosome 6A of hexaploid wheat provide an important first step to advance our understanding of the genetic mechanisms regulating the complex processes governing grain size and yield in polyploid wheat.
更多
查看译文
关键词
quantitative trait loci,agriculture,gene environment interaction,biomass,plant sciences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要