High-angle tilt boundary graphene domain recrystallized from mobile hot-wire-assisted chemical vapor deposition system.

NANO LETTERS(2014)

引用 21|浏览10
暂无评分
摘要
Crystallization of materials has attracted research interest for a long time, and its mechanisms in three-dimensional materials have been well studied. However, crystallization of two-dimensional (2D) materials is yet to be challenged. Clarifying the dynamics underlying growth of 2D materials will provide the insight for the potential route to synthesize large and highly crystallized 2D domains with low defects. Here, we present the growth dynamics and recrystallization of 2D material graphene under a mobile hot-wire assisted chemical vapor deposition (MHW-CVD) system. Under local but sequential heating by MHW-CVD system, the initial nucleation of nanocrystalline graphenes, which was not extended into the growth stage due to the insufficient thermal energy, took a recrystallization and converted into a grand single crystal domain. During this process, the stitching-like healing of graphene was also observed. The local but sequential endowing thermal energy to nanocrystalline graphenes enabled us to simultaneously reveal the recrystallization and healing dynamics in graphene growth, which suggests an alternative route to synthesize a highly crystalline and large domain size graphene. Also, this recrystallization and healing of 2D nanocrystalline graphenes offers an interesting insight on the growth mechanism of 2D materials.
更多
查看译文
关键词
graphene,recrystallization,high-angle tilt boundary,global domain,chemical vapor deposition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要