Synthesis and luminescence resonance energy transfer based on noble metal nanoparticles and the NaYF₄:Tb³⁺ shell.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2014)

引用 27|浏览4
暂无评分
摘要
A core-shell hybrid nanostructure was prepared by combining NaYF4 doped with the lanthanide dopant Tb3+ as shell layer materials and noble metal nanoparticles (Au and Ag) as cores. For the core-shell system, the luminescence resonance energy transfer (LRET) was demonstrated, in which noble metal nanoparticles as fluorescence quenchers can absorb the emission energy of the alpha-NaYF4:Tb3+ donor. The morphology, structure, composition and properties of the as-prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), UV-Vis absorption and photoluminescence (PL) spectroscopy, respectively. In the Au/Ag@NaYF4:Tb3+ system, it is observed that the plasmonic absorption bands of gold or silver nanoparticles overlap with the emission bands of D-5(4) -> F-7(j) (j = 6, 5) transition of the Tb3+ ions, and the emission intensity of the D-5(4) -> F-7(5) transition is clearly attenuated. The photoluminescence decay curve measurements show that the lifetimes of the D-5(4) -> F-7(6) and D-5(4) -> F-7(5) transitions of Tb3+ are slightly decreased in the presence of gold or silver cores. The quenching efficiency of the gold and silver nanoparticles implies that the efficiency of energy transfer is highly dependent on the extent of spectral overlap in the LRET system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要