Phosphorylation of Eukaryotic Translation Initiation Factor 4E and Eukaryotic Translation Initiation Factor 4E-binding Protein (4EBP) and Their Upstream Signaling Components Undergo Diurnal Oscillation in the Mouse Hippocampus: IMPLICATIONS FOR MEMORY PERSISTENCE

Journal of Biological Chemistry(2014)

引用 27|浏览9
暂无评分
摘要
Translation of mRNA plays a critical role in consolidation of long-term memory. Here, we report that markers of initiation of mRNA translation are activated during training for contextual memory and that they undergo diurnal oscillation in the mouse hippocampus with maximal activity observed during the daytime (zeitgeber time 4-8 h). Phosphorylation and activation of eukaryotic translation initiation factor 4E (eIF4E), eIF4E-binding protein 1 (4EBP1), ribosomal protein S6, and eIF4F cap-complex formation, all of which are markers for translation initiation, were higher in the hippocampus during the daytime compared with night. The circadian oscillation in markers of mRNA translation was lost in memory-deficient transgenic mice lacking calmodulin-stimulated adenylyl cyclases. Moreover, disruption of the circadian rhythm blocked diurnal oscillations in eIF4E, 4EBP1, rpS6, Akt, and ERK1/2 phosphorylation and impaired memory consolidation. Furthermore, repeated inhibition of translation in the hippocampus 48 h after contextual training with the protein synthesis inhibitor anisomycin impaired memory persistence. We conclude that repeated activation of markers of translation initiation in hippocampus during the circadian cycle might be critical for memory persistence.
更多
查看译文
关键词
Circadian Rhythm,Eukaryotic Translation Initiation Factor 4E (eIF4E),Neurobiology,Signal Transduction,Translation,Contextual Fear Conditioning,Long Term Memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要