Retraction: Targeting the Warburg effect with a novel glucose transporter inhibitor to overcome gemcitabine resistance in pancreatic cancer cells.

CARCINOGENESIS(2019)

引用 43|浏览4
暂无评分
摘要
Gemcitabine resistance remains a significant clinical challenge. Here, we used a novel glucose transporter (Glut) inhibitor, CG-5, as a proof-of-concept compound to investigate the therapeutic utility of targeting the Warburg effect to overcome gemcitabine resistance in pancreatic cancer. The effects of gemcitabine and/or CG-5 on viability, survival, glucose uptake and DNA damage were evaluated in gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cell lines. Mechanistic studies were conducted to determine the molecular basis of gemcitabine resistance and the mechanism of CG-5-induced sensitization to gemcitabine. The effects of CG-5 on gemcitabine sensitivity were investigated in a xenograft tumor model of gemcitabine-resistant pancreatic cancer. In contrast to gemcitabine-sensitive pancreatic cancer cells, the resistant Panc-1 and Panc-1(GemR) cells responded to gemcitabine by increasing the expression of ribonucleotide reductase M2 catalytic subunit (RRM2) through E2F1-mediated transcriptional activation. Acting as a pan-Glut inhibitor, CG-5 abrogated this gemcitabine-induced upregulation of RRM2 through decreased E2F1 expression, thereby enhancing gemcitabine-induced DNA damage and inhibition of cell survival. This CG-5-induced inhibition of E2F1 expression was mediated by the induction of a previously unreported E2F1-targeted microRNA, miR-520f. The addition of oral CG-5 to gemcitabine therapy caused greater suppression of Panc-1(GemR) xenograft tumor growth in vivo than either drug alone. Glut inhibition may be an effective strategy to enhance gemcitabine activity for the treatment of pancreatic cancer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要