The Borrelia Hermsii Factor H Binding Protein Fhba Is Not Required For Infectivity In Mice Or For Resistance To Human Complement In Vitro

INFECTION AND IMMUNITY(2014)

引用 14|浏览4
暂无评分
摘要
The primary causative agent of tick-borne relapsing fever in North America is Borrelia hermsii. It has been hypothesized that B. hermsii evades complement-mediated destruction by binding factor H (FH), a host-derived negative regulator of complement. In vitro, B. hermsii produces a single FH binding protein designated FhbA (FH binding protein A). The properties and ligand binding activity of FhbA suggest that it plays multiple roles in pathogenesis. It binds plasminogen and has been identified as a significant target of a B1b B cell-mediated IgM response in mice. FhbA has also been explored as a potential diagnostic antigen for B. hermsii infection in humans. The ability to test the hypothesis that FhbA is a critical virulence factor in vivo has been hampered by the lack of well-developed systems for the genetic manipulation of the relapsing fever spirochetes. In this report, we have successfully generated a B. hermsii fhbA deletion mutant (the B. hermsii YOR Delta fhbA strain) through allelic exchange mutagenesis. Deletion of fhbA abolished FH binding by the YOR Delta fhbA strain and eliminated cleavage of C3b on the cell surface. However, the YOR Delta fhbA strain remained infectious in mice and retained resistance to killing in vitro by human complement. Collectively, these results indicate that B. hermsii employs an FhbA/FH-independent mechanism of complement evasion that allows for resistance to killing by human complement and persistence in mice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要