Dose Homogeneity In Boron Neutron-Capture Therapy Using An Epithermal Neutron Beam

Radiation research(1995)

引用 19|浏览4
暂无评分
摘要
Simulation models based on the neutron and photon Monte Carlo code MCNP were used to study the therapeutic possibilities of the HB11 epithermal neutron beam at the High Flux Reactor in Petten. Irradiations were simulated in two types of phantoms filled with water or tissue-equivalent material for benchmark treatment planning calculations. In a cuboid phantom the influence of different field sizes on the thermal-neutron-induced dose distribution was investigated. Various shapes of collimators were studied to test their efficacy in optimizing the thermal-neutron distribution over a planning target volume and healthy tissues. Using circular collimators of 8, 12 and 15 cm diameter it was shown that with the 15-cm field a relatively larger volume within 85% of the maximum neutron-induced dose was obtained than with the 8- or 12-cm-diameter field. However, even for this large field the maximum diameter of this volume was 7.5 cm. In an ellipsoid head phantom the neutron-induced dose was calculated assuming the skull to contain 10 ppm B-10, the brain 5 ppm B-10 and the tumor 30 ppm B-10. It was found that with a single 15-cm-diameter circular beam a very inhomogeneous dose distribution in a typical target volume was obtained. Applying two equally weighted opposing 15-cm-diameter fields, however, a dose homogeneity within +/-10% in this planning target volume was obtained. The dose in the surrounding healthy brain tissue is 30% at maximum of the dose in the center of the target volume. Contrary to the situation for the 8-cm field, combining four fields of 15 cm diameter gave no large improvement of the dose homogeneity over the target volume or a lower maximum dose in the healthy brain. Dose-volume histograms were evaluated for the planning target volume as well as for the healthy brain to compare different irradiation techniques, yielding a graphical confirmation of the above conclusions. Therapy with BNCT on brain tumors must be performed either with an 8-cm four-field irradiation or with two opposing 15- or 12-cm fields to obtain an optimal dose distribution. (C) 1995 by Radiation Research Society
更多
查看译文
关键词
treatment planning,monte carlo,simulation model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要