A feed-forward mechanism involving Drosophila fragile X mental retardation protein triggers a replication stress-induced DNA damage response.

HUMAN MOLECULAR GENETICS(2014)

引用 30|浏览10
暂无评分
摘要
Fragile X syndrome, a common form of inherited mental retardation, is caused by loss of the fragile X mental retardation protein (FMRP). As a selective RNA-binding protein, FMRP is localized predominately in cytoplasm, where it regulates translational control. However, there is a small portion of FMRP present in the nucleus, and its function there has been elusive. Here, we show that Drosophila dFMR1 in nucleus is required for replication stress-induced H2Av phosphorylation in the DNA damage response (DDR). Replication stress could induce the expression of dFmr1 and promote the nuclear accumulation of dFMR1. We show that, upon the stimulation of replication stress, dFMR1 is associated with chromatin in a domain-specific manner, which is essential for its ability to induce the phosphorylation of H2Av. These results together reveal an unexpected nuclear role of FMRP in DDR and uncover a feed-forward mechanism by which dFmr1 and early DDR induced by replication stress reciprocally regulate each other, thereby synergistically triggering activity of the DDR signaling cascade.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要