Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes

Nature(2014)

引用 1344|浏览0
暂无评分
摘要
Insulin-dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice results from the T-lymphocyte-mediated destruction of the insulin-producing pancreatic beta-cells and serves as a model for human IDDM. Whereas a number of autoantibodies are associated with IDDM, it is unclear when and to what beta-cell antigens pathogenic T cells become activated during the disease process. We report here that a T-helper-1 (Th1) response to glutamate decarboxylase develops in NOD mice at the same time as the onset of insulitis. This response is initially limited to a confined region of glutamate decarboxylase, but later spreads intramolecularly to additional determinants. Subsequently, T-cell reactivity arises to other beta-cell antigens, consistent with intermolecular diversification of the response. Prevention of the spontaneous anti-glutamate decarboxylase response, by tolerization of glutamate decarboxylase-reactive T cells, blocks the development of T-cell autoimmunity to other beta-cell antigens, as well as insulitis and diabetes. Our data suggest that (1) glutamate decarboxylase is a key target antigen in the induction of murine IDDM; (2) autoimmunity to glutamate decarboxylase triggers T-cell responses to other beta-cell antigens, and (3) spontaneous autoimmune disease can be prevented by tolerization to the initiating target antigen.
更多
查看译文
关键词
Beta Cell, Glutamic Acid, Target Antigen, Glutamic Acid Decarboxylase, Glutamate Decarboxylase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要