Endothelial cells respond to hyperglycemia by increasing the LPL transporter GPIHBP1.

American journal of physiology. Endocrinology and metabolism(2014)

引用 14|浏览9
暂无评分
摘要
In diabetes, when glucose uptake and oxidation are impaired, the heart is compelled to use fatty acid (FA) almost exclusively for ATP. The vascular content of lipoprotein lipase (LPL), the rate-limiting enzyme that determines circulating triglyceride clearance, is largely responsible for this FA delivery and increases following diabetes. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein [GPIHBP1; a protein expressed abundantly in the heart in endothelial cells (EC)] collects LPL from the interstitial space and transfers it across ECs onto the luminal binding sites of these cells, where the enzyme is functional. We tested whether ECs respond to hyperglycemia by increasing GPIHBP1. Streptozotocin diabetes increased cardiac LPL activity and GPIHBP1 gene and protein expression. The increased LPL and GPIHBP1 were located at the capillary lumen. In vitro, passaging EC caused a loss of GPIHBP1, which could be induced on exposure to increasing concentrations of glucose. The high-glucose-induced GPIHBP1 increased LPL shuttling across EC monolayers. GPIHBP1 expression was linked to the EC content of heparanase. Moreover, active heparanase increased GPIHBP1 gene and protein expression. Both ECs and myocyte heparan sulfate proteoglycan-bound platelet-derived growth factor (PDGF) released by heparanase caused augmentation of GPIHBP1. Overall, our data suggest that this protein "ensemble" (heparanase-PDGF-GPIHBP1) cooperates in the diabetic heart to regulate FA delivery and utilization by the cardiomyocytes. Interrupting this axis may be a novel therapeutic strategy to restore metabolic equilibrium, curb lipotoxicity, and help prevent or delay heart dysfunction that is characteristic of diabetes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要