Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2014)

引用 69|浏览11
暂无评分
摘要
Even though nanocomposites have provided a plethora of routes to increase stiffness and strength, achieving increased toughness with suppressed catastrophic crack growth has remained more challenging. Inspired by the concepts of mechanically excellent natural nanomaterials, one-component nanocomposites were fabricated involving reinforcing colloidal nanorod cores with polymeric grafts containing supramolecular binding units. The concept is based on mechanically strong native cellulose nanocrystals (CNC) grafted with glassy polymethacrylate polymers, with side chains that contain 2-ureido-4[1H]-pyrimidone (UPy) pendant groups. The interdigitation of the grafts and the ensuing UPy hydrogen bonds bind the nanocomposite network together. Under stress, UPy groups act as sacrificial bonds: simultaneously providing adhesion between the CNCs while allowing them to first orient and then gradually slide past each other, thus dissipating fracture energy. We propose that this architecture involving supramolecular binding units within side chains of polymer grafts attached to colloidal reinforcements opens generic approaches for tough nanocomposites.
更多
查看译文
关键词
biomimetic materials,cellulose nanocrystals,nanocomposite,supramolecular chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要