Dentin matrix proteins (DMPs) enhance differentiation of BMMSCs via ERK and P38 MAPK pathways

Cell and tissue research(2014)

引用 25|浏览16
暂无评分
摘要
Dentin, the predominant mineralized tissue of the tooth, comprises an extracellular matrix of collagen and a heterogeneous mixture of non-collagenous components, many of which have cellular signaling properties. These properties may be important in signaling stem cell involvement in tissue regeneration following injury and the present study investigates their morphogenic effects on differentiation of Bone Marrow Stromal Stem Cells (BMMSCs) in vitro. Non-collagenous dentin matrix proteins (DMPs) were isolated from healthy human teeth and their effects on BMMSCs behavior examined during in vitro culture. In vitro, DMPs enhanced alkaline phosphatase activity and mineralization in BMMSCs cultures as well as increasing the expression of dentinogenic and osteogenic differentiation markers (including runt-related transcription factor 2, osterix, bone sialoprotein, dentin sialophosphoprotein and osteocalcin) at both transcript and protein levels, with 10 μg/mL DMPs being the optimal stimulatory concentration. Expression of phosphor-ERK/phosphor-P38 in BMMSCs was up-regulated by DMPs and, in the presence of the ERK1/2- and p38-specific inhibitors, the differentiation of BMMSCs was inhibited. These data indicate that DMPs promote the dentinogenic/osteogenic differentiation of BMMSCs via the ERK/p38 MAPK pathways.
更多
查看译文
关键词
Dentin matrix proteins,Dentinogenesis,Osteogenesis,Bone marrow-derived mesenchymal stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要