Assessment of Myeloperoxidase Activity by the Conversion of Hydroethidine to 2-Chloroethidium

Journal of Biological Chemistry(2014)

引用 39|浏览17
暂无评分
摘要
Background: Myeloperoxidase activity is commonly assessed in vivo by the accumulation of 3-chlorotyrosine. Results: Myeloperoxidase-derived chlorinating species specifically converted hydroethidine to 2-chloroethidium with efficiency superior to that of the corresponding conversion of tyrosine to 3-chlorotyrosine. Conclusion: Hydroethidine is useful to assess myeloperoxidase activity in vivo, in parallel with its simultaneous use to detect superoxide. Significance: 2-Chloroethidium is a useful additional marker of myeloperoxidase activity.Oxidants derived from myeloperoxidase (MPO) contribute to inflammatory diseases. In vivo MPO activity is commonly assessed by the accumulation of 3-chlorotyrosine (3-Cl-Tyr), although 3-Cl-Tyr is formed at low yield and is subject to metabolism. Here we show that MPO activity can be assessed using hydroethidine (HE), a probe commonly employed for the detection of superoxide. Using LC/MS/MS, H-1 NMR, and two-dimensional NOESY, we identified 2-chloroethidium (2-Cl-E+) as a specific product when HE was exposed to hypochlorous acid (HOCl), chloramines, MPO/H2O2/chloride, and activated human neutrophils. The rate constant for HOCl-mediated conversion of HE to 2-Cl-E+ was estimated to be 1.5 x 10(5) m(-1)s(-1). To investigate the utility of 2-Cl-E+ to assess MPO activity in vivo, HE was injected into wild-type and MPO-deficient (Mpo(-/-)) mice with established peritonitis or localized arterial inflammation, and tissue levels of 2-Cl-E+ and 3-Cl-Tyr were then determined by LC/MS/MS. In wild-type mice, 2-Cl-E+ and 3-Cl-Tyr were detected readily in the peritonitis model, whereas in the arterial inflammation model 2-Cl-E+ was present at comparatively lower concentrations (17 versus 0.3 pmol/mg of protein), and 3-Cl-Tyr could not be detected. Similar to the situation with 3-Cl-Tyr, tissue levels of 2-Cl-E+ were decreased substantially in Mpo(-/-) mice, indicative of the specificity of the assay. In the arterial inflammation model, 2-Cl-E+ was absent from non-inflamed arteries and blood, suggesting that HE oxidation occurred locally in the inflamed artery. Our data suggest that the conversion of exogenous HE to 2-Cl-E+ may be a useful selective and sensitive marker for MPO activity in addition to 3-Cl-Tyr.
更多
查看译文
关键词
HPLC,Inflammation,Mass Spectrometry (MS),Neutrophil,Oxidative Stress,3-Chlorotyrosine,Chloramines,Dihydroethidium,Hypochlorous Acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要