The molecular basis for selective assembly of the UBAP1-containing endosome-specific ESCRT-I complex.

Journal of cell science(2013)

引用 25|浏览6
暂无评分
摘要
ESCRT-I is essential for the multivesicular body (MVB) sorting of ubiquitylated cargo such as epidermal growth factor receptor, as well as for several cellular functions, such as cell division and retroviral budding. ESCRT-I has four subunits; TSG101, VPS28, VPS37 and MVB12. There are several members of VPS37 and MVB12 families in mammalian cells, and their differential incorporation into ESCRT-I could provide function-specific variants of the complex. However, it remains unclear whether these different forms of VPS37 and MVB12 combine randomly or generate selective pairings within ESCRT-I, and what the mechanistic basis for such pairing would be. Here, we show that the incorporation of two MVB12 members, UBAP1 and MVB12A, into ESCRT-I is highly selective with respect to their VPS37 partners. We map the region mediating selective assembly of UBAP1-VPS37A to the core ESCRT-I-binding domain of VPS37A. In contrast, selective integration of UBAP1 requires both the minimal ESCRT-I-binding region and a neighbouring predicted helix. The biochemical specificity in ESCRT-I assembly is matched by functional specialisation as siRNA-mediated depletion of UBAP1, but not MVB12A and MVB12B, disrupts ubiquitin-dependent sorting at the MVB.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要