Self-Assembly Of Left- And Right-Handed Molecular Screws

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2013)

引用 53|浏览5
暂无评分
摘要
Stereoselectivity is a hallmark of biomolecular processes from catalysis to self-assembly, which predominantly occur between homochiral species. However, both homochiral and heterochiral complexes of synthetic polypeptides have been observed where stereoselectivity hinges on details of intermolecular interactions. This raises the question whether general rules governing stereoselectivity exist. A geometric ridges-in-grooves model of interacting helices indicates that heterochiral associations should generally be favored in this class of structures. We tested this principle using a simplified molecular screw, a collagen peptide triple-helix composed of either L- or D-proline with a cyclic aliphatic side chain. Calculated stabilities of like- and opposite-handed triple-helical pairings indicated a preference for heterospecific associations. Mixing left- and right-handed helices drastically lowered solubility, resulting in micrometer-scale sheet-like assemblies that were one peptide-length thick as characterized with atomic force microscopy. X-ray scattering measurements of interhelical spacing in these sheets support a tight ridges-in-grooves packing of left- and right-handed triple helices.
更多
查看译文
关键词
solubility,stereoisomerism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要