Mammary-specific gene activation is defined by progressive recruitment of STAT5 during pregnancy and the establishment of H3K4me3 marks.

MOLECULAR AND CELLULAR BIOLOGY(2014)

引用 28|浏览6
暂无评分
摘要
Differentiation of mammary secretory epithelium during pregnancy is characterized by sequential activation of genes over several orders of magnitude. Although the transcription factor STAT5 is key to alveolar development, it is not clear to what extent it controls temporal activation of genetic programs in secretory epithelium. To uncover molecular mechanisms effecting progressive differentiation, we explored genome-wide STAT5 binding and H3K4me3 (i.e., trimethylated histone H3 at K4) marks in mammary tissues at early and midpregnancy and at parturition. STAT5 binding to genes induced during pregnancy was low in immature mammary tissue but increased with epithelial differentiation. Increased STAT5 binding was associated with the establishment of H3K4me3 marks and transcriptional activation. STAT5 binding preceded the formation of H3K4me3 marks in some mammary-specific genes. De novo STAT5 binding was also found at distal sites, indicating enhancers. Furthermore, we established an exhaustive mammary transcriptome. Through integration of RNA-seq and STAT5 and H3K4me4 ChIP-seq data, we discovered novel mammary-specific alternative promoters and genes, including noncoding RNAs. Our findings suggest that STAT5 is an early step in establishing transcription complexes on genes specifically expressed in mammary epithelium. This is the first study in an organ that links progressive chromatin occupancy of STAT5 to the acquisition of H3K4me3 marks and transcription during hormone-induced differentiation.
更多
查看译文
关键词
phosphorylation,methylation,histones,protein binding,chromatin,epithelium,transcriptome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要