The Role Of In Vitro Adme Assays In Antimalarial Drug Discovery And Development

COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING(2005)

引用 13|浏览5
暂无评分
摘要
The high level of attrition of drugs in clinical development has led pharmaceutical companies to increase the efficiency of their lead identification and development through techniques such as combinatorial chemistry and high-throughput (HTP) screening. Since the major reasons for clinical drug candidate failure other than efficacy are pharmacokinetics and toxicity, attention has been focused on assessing properties Such as metabolic stability, drug-drug interactions (DDI), and absorption earlier in the drug discovery process. Animal studies are simply too labor-intensive and expensive to use for evaluating every hit, so it has been necessary to develop and implement higher throughput in vitro ADME screens to manage the large number of compounds of interest.The antimalarial drug development program at the Walter Reed Army Institute of Research, Division of Experimental Therapeutics (WRAIR/ET) has adopted this paradigm in its search for a long-term prophylactic for the prevention of malaria. The overarching goal of this program is to develop new, long half-life, orally bioavailable compounds with potent intrinsic activity against liver- and blood-stage parasites. From the WRAIR HTP antimalarial screen, numerous compounds are regularly identified with potent activity. These hits are now immediately evaluated using a panel of in vitro ADME screens to identify and predict compounds that will meet our specific treatment criteria. In this review, the WRAIR ADME screening program for antimalarial drugs is described as well as how we have implemented it to predict the ADME properties of small molecule for the identification of promising drug candidates.
更多
查看译文
关键词
ADME, antimalarial drugs, metabolism, mass spectrometry, drug-drug interactions, permeability, modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要