Online NMR and HPLC as a reaction monitoring platform for pharmaceutical process development.

ANALYTICAL CHEMISTRY(2013)

引用 85|浏览5
暂无评分
摘要
Detector response is not always equivalent between detectors or instrument types. Factors that impact detector response include molecular structure and detection wavelength. In liquid chromatography (LC), ultraviolet (UV) is often the primary detector; however, without determination of UV response factors for each analyte, chromatographic results are reported on an area percent rather than a weight percent. In extreme cases, response factors can differ by several orders of magnitude for structurally dissimilar compounds, making the uncalibrated data useless for quantitative applications. While impurity reference standards are normally used to calculate UV relative response factors (RRFs), reference standards of reaction mixture components are typically not available during route scouting or in the early stages of process development. Here, we describe an approach to establish RRFs from a single experiment using both online nuclear magnetic resonance (NMR) and LC. NMR is used as a mass detector from which a UV response factor can be determined to correct the high performance liquid chromatography (HPLC) data. Online reaction monitoring using simultaneous NMR and HPLC provides a platform to expedite the development and understanding of pharmaceutical reaction processes. Ultimately, the knowledge provided by a structurally information rich technique such as NMR can be correlated with more prevalent and mobile instrumentation [e.g., LC, mid-infrared spectrometers (MIR)] for additional routine process understanding and optimization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要