Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter

Applied microbiology and biotechnology(2013)

引用 30|浏览3
暂无评分
摘要
The microbial community structure of a stable pilot-scale thermophilic continuous stirred tank reactor digester stabilized on poultry litter was investigated. This 40-m 3 digester produced biogas with 57 % methane, and chemical oxygen demand removal of 54 %. Bacterial and archaeal diversity were examined using both cloning and pyrosequencing that targeted 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes , constituting 93 % of the clones and 76 % of the pyrotags. Of the Firmicutes , class Clostridia (52 % pyrotags) was most abundant followed by class Bacilli (13 % pyrotags). The bacterial libraries identified 94 operational taxonomic units (OTUs) and pyrosequencing identified 577 OTUs at the 97 % minimum similarity level. Fifteen OTUs were dominant (≥2 % abundance), and nine of these were novel unclassified Firmicutes . Several of the dominant OTUs could not be classified more specifically than Clostridiales , but were most similar to plant biomass degraders, including Clostridium thermocellum . Of the rare pyrotag OTUs (<0.5 % abundance), 75 % were Firmicutes . The dominant methanogen was Methanothermobacter which has hydrogenotrophic metabolism, and accounted for >99 % of the archaeal clones. Based on the primary methanogen, as well as digester chemistry (high VA and ammonia levels), we propose that bacterial acetate oxidation is the primary pathway in this digester for the control of acetate levels.
更多
查看译文
关键词
biogas,anaerobic digestion,chemical oxygen demand,thermophilic bacteria,species richness,clones,species diversity,metabolism,methane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要