Amelioration of an undesired action of deguelin.

Toxicon(2013)

引用 10|浏览4
暂无评分
摘要
The pharmaceutical world has greatly benefited from the well-characterized structure–function relationships of toxins with endogenous biomolecules, such as ion-channels, receptors, and signaling molecules. Thus, therapeutics derived from toxins have been aggressively pursued. However, the multifunctional role of various toxins may lead to undesirable off-target effects, hindering their use as therapeutic agents. In this paper, we suggest that previously unsuccessful toxins (due to off-target effects) may be revisited with mixtures by utilizing the pharmacodynamic response to the potential primary therapeutic as a starting point for finding new targets to ameliorate the unintended responses. In this proof of principle study, the pharmacodynamic response of HepG2 cells to a potential primary therapeutic (deguelin, a plant-derived chemopreventive agent) was monitored, and a possible secondary target (p38MAPK) was identified. As a single agent, deguelin decreased cellular viability at higher doses (>10 μM), but inhibited oxygen consumption over a wide dosing range (1.0–100 μM). Our results demonstrate that inhibition of oxygen consumption is related to an increase in p38MAPK phosphorylation, and may only be an undesired side effect of deguelin (i.e., one that does not contribute to the decrease in HepG2 viability). We further show that deguelin's negative effect on oxygen consumption can be diminished while maintaining efficacy when used as a therapeutic mixture with the judiciously selected secondary inhibitor (SB202190, p38MAPK inhibitor). These preliminary findings suggest that an endogenous response-directed mixtures approach, which uses a pharmacodynamic response to a primary therapeutic to determine a secondary target, allows previously unsuccessful toxins to be revisited as therapeutic mixtures.
更多
查看译文
关键词
Therapeutic mixtures,Deguelin,Pharmacodynamics,Plant-derived therapeutics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要