β-globin gene transfer to human bone marrow for sickle cell disease.

JOURNAL OF CLINICAL INVESTIGATION(2013)

引用 103|浏览10
暂无评分
摘要
Autologous hematopoietic stem cell gene therapy is an approach to treating sickle cell disease (SCD) patients that may result in lower morbidity than allogeneic transplantation. We examined the potential of a lentiviral vector (LV) (CCL-beta AS3-FB) encoding a human hemoglobin (HBB) gene engineered to impede sickle hemoglobin polymerization (HBBAS3) to transduce human BM CD34(+) cells from SCD donors and prevent sickling of red blood cells produced by in vitro differentiation. The CCL-beta AS3-FB LV transduced. BM CD34(+) cells from either healthy or SCD donors at similar levels, based on quantitative PCR and colony-forming unit progenitor analysis. Consistent expression of HBBAS3 mRNA and HbAS3 protein compromised a fourth of the total beta-globin-like transcripts and hemoglobin (Hb) tetramers. Upon deoxygenation, a lower percentage of HBBAS3-transduced red blood cells exhibited sickling compared with mock-transduced cells from sickle donors. Transoluced. BM CD34(+) cells were transplanted into immunodeficient mice, and the human cells recovered after 2-3 months were cultured for erythroid differentiation, which showed levels of HBBAS3 mRNA similar to those seen in the CD34(+) cells that were directly differentiated in vitro. These results demonstrate that the CCL-beta AS3-FB LV is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human SCD BM CD34(+) progenitor cells, improving physiologic parameters of the resulting red blood cells.
更多
查看译文
关键词
biomedical research,bioinformatics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要