Atg4b-Dependent Autophagic Flux Alleviates Huntington'S Disease Progression

PLOS ONE(2013)

引用 34|浏览8
暂无评分
摘要
The accumulation of aggregated mutant huntingtin (mHtt) inclusion bodies is involved in Huntigton's disease (HD) progression. Medium sized-spiny neurons (MSNs) in the corpus striatum are highly vulnerable to mHtt aggregate accumulation and degeneration, but the mechanisms and pathways involved remain elusive. Here we have developed a new model to study MSNs degeneration in the context of HD. We produced organotypic cortico-striatal slice cultures (CStS) from HD transgenic mice mimicking specific features of HD progression. We then show that induction of autophagy using catalytic inhibitors of mTOR prevents MSNs degeneration in HD CStS. Furthermore, disrupting autophagic flux by overexpressing Atg4b in neurons and slice cultures, accelerated mHtt aggregation and neuronal death, suggesting that Atg4b-dependent autophagic flux influences HD progression. Under these circumstances induction of autophagy using catalytic inhibitors of mTOR was inefficient and did not affect mHtt aggregate accumulation and toxicity, indicating that mTOR inhibition alleviates HD progression by inducing Atg4b-dependent autophagic flux. These results establish modulators of Atg4b-dependent autophagic flux as new potential targets in the treatment of HD.
更多
查看译文
关键词
engineering,physics,chemistry,nuclear proteins,autophagy,biology,biocatalysis,medicine,phenotype
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要