Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites.

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A(2014)

引用 33|浏览6
暂无评分
摘要
Surface pre-endothelialization is a promising approach to improve the hemocompatibility of implants, medical devices, and artificial organs. To promote the adhesive property of thermoplastic polyurethane (TPU) for endothelial cells (ECs), up to 1 wt % of gold (Au) or platinum (Pt) nanoparticles, fabricated by pulsed laser ablation in polymer solution, were embedded into the polymer matrix. The analysis of these nanocomposites showed a homogenous dispersion of the nanoparticles, with average diameters of 7 nm for Au or 9 nm for Pt. A dose-dependent effect was found when ECs were seeded onto nanocomposites comprising different nanoparticle concentrations, resulting in a fivefold improvement of proliferation at 0.1 wt % nanoparticle load. This effect was associated with a nanoparticle concentration-dependent hydrophilicity and negative charge of the nanocomposite. In dynamic flow tests, nanocomposites containing 0.1 wt % Au or Pt nanoparticles allowed for the generation of a confluent and resistant EC layer. Real-time polymerase chain reaction quantification of specific markers for EC activation indicated that ECs cultivated on nanocomposites remain in an inactivated, nonthrombogenic and noninflammatory state; however, maintain the ability to trigger an inflammatory response upon stimulation. These findings were confirmed by a platelet and leukocyte adhesion assay. The results of this study suggest the possible applicability of TPU nanocomposites, containing 0.1 wt % Au or Pt nanoparticles, for the generation of pre-endothelialized surfaces of medical devices. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 1909-1920, 2014.
更多
查看译文
关键词
endothelialization,nanocomposites,cell adhesion and proliferation,metal nanoparticles,biomedical application
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要