Multi-scale clustering by building a robust and self correcting ultrametric topology on data points.

PloS one(2013)

引用 29|浏览1
暂无评分
摘要
The advent of high-throughput technologies and the concurrent advances in information sciences have led to an explosion in size and complexity of the data sets collected in biological sciences. The biggest challenge today is to assimilate this wealth of information into a conceptual framework that will help us decipher biological functions. A large and complex collection of data, usually called a data cloud, naturally embeds multi-scale characteristics and features, generically termed geometry. Understanding this geometry is the foundation for extracting knowledge from data. We have developed a new methodology, called data cloud geometry-tree (DCG-tree), to resolve this challenge. This new procedure has two main features that are keys to its success. Firstly, it derives from the empirical similarity measurements a hierarchy of clustering configurations that captures the geometric structure of the data. This hierarchy is then transformed into an ultrametric space, which is then represented via an ultrametric tree or a Parisi matrix. Secondly, it has a built-in mechanism for self-correcting clustering membership across different tree levels. We have compared the trees generated with this new algorithm to equivalent trees derived with the standard Hierarchical Clustering method on simulated as well as real data clouds from fMRI brain connectivity studies, cancer genomics, giraffe social networks, and Lewis Carroll's Doublets network. In each of these cases, we have shown that the DCG trees are more robust and less sensitive to measurement errors, and that they provide a better quantification of the multi-scale geometric structures of the data. As such, DCG-tree is an effective tool for analyzing complex biological data sets.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要