Combining small-volume metabolomic and transcriptomic approaches for assessing brain chemistry.

ANALYTICAL CHEMISTRY(2013)

引用 27|浏览8
暂无评分
摘要
The integration of disparate data types provides a more complete picture of complex biological systems. Here we combine small-volume metabolomic and transcriptomic platforms to determine subtle chemical changes and to link metabolites and genes to biochemical pathways. Capillary electrophoresis-mass spectrometry (CE-MS) and whole-genome gene expression arrays, aided by integrative pathway analysis, were utilized to survey metabolomic/transcriptomic hippocampal neurochemistry. We measured changes in individual hippocampi from the mast cell mutant mouse strain, CS7BL/6 Kit(W-sh/W-sh). These mice have a naturally occurring mutation in the white spotting locus that causes reduced c-Kit receptor expression and an inability of mast cells to differentiate from their hematopoietic progenitors. Compared with their littermates, the mast cell-deficient mice have profound deficits in spatial learning, memory, and neurogenesis. A total of 18 distinct metabolites were identified in the hippocampus that discriminated between the CS7BL/6 KitKit(W-sh/W-sh) and control mice. The combined analysis of metabolite and gene expression changes revealed a number of altered pathways. Importantly, results from both platforms indicated that multiple pathways are impacted, including amino acid metabolism, increasing the confidence in each approach. Because the CE-MS and expression profiling are both amenable to small-volume analysis, this integrated analysis is applicable to a range of volume-limited biological systems.
更多
查看译文
关键词
gene expression profiling,metabolomics,brain chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要