Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface.

Neuron(2013)

引用 100|浏览6
暂无评分
摘要
Neural oscillations in the low-gamma range (30–50 Hz) have been implicated in neuronal synchrony, computation, behavior, and cognition. Abnormal low-gamma activity, hypothesized to reflect impaired synchronization, has been evidenced in several brain disorders. Thus, understanding the relations between gamma oscillations, neuronal synchrony and behavior is a major research challenge. We used a brain-machine interface (BMI) to train monkeys to specifically increase low-gamma power in selected sites of motor cortex to move a cursor and obtain a reward. The monkeys learned to robustly generate oscillatory gamma waves, which were accompanied by a dramatic increase of spiking synchrony of highly precise spatiotemporal patterns. The findings link volitional control of LFP oscillations, neuronal synchrony, and the behavioral outcome. Subjects’ ability to directly modulate specific patterns of neuronal synchrony provides a powerful approach for understanding neuronal processing in relation to behavior and for the use of BMIs in a clinical setting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要