Ccpa-Independent Glucose Regulation Of Lactate Dehydrogenase 1 In Staphylococcus Aureus

PLOS ONE(2013)

引用 28|浏览16
暂无评分
摘要
Lactate Dehydrogenase 1 (Ldh1) is a key enzyme involved in Staphylococcus aureus NO-resistance. Full ldh1-induction requires the presence of glucose, and mutants lacking the Carbon-Catabolite Protein (CcpA) exhibit decreased ldh1 transcription and diminished Ldh1 activity. The redox-regulator Rex represses ldh1 directly by binding to Rex-sites within the ldh1 promoter (P-ldh1). In the absence of Rex, neither glucose nor CcpA affect ldh1 expression implying that glucose/CcpA-mediated activation requires Rex activity. Rex-mediated repression of ldh1 depends on cellular redox status and is maximal when NADH levels are low. However, compared to WT cells, the Delta ccpA mutant exhibited impaired redox balance with relatively high NADH levels, yet ldh1 was still poorly expressed. Furthermore, CcpA did not drastically alter Rex transcript levels, nor did glucose or CcpA affect the expression of other Rex-regulated genes indicating that the glucose/CcpA effect is specific for P-ldh1. A putative catabolite response element (CRE) is located similar to 30 bp upstream of the promoter-distal Rex-binding site in P-ldh1. However, CcpA had no affinity for P-ldh1 in vitro and a genomic mutation of CRE upstream of P-ldh1 in S. aureus had no affect on Ldh1 expression in vivo. In contrast to WT, Delta ccpA S. aureus preferentially consumes non-glycolytic carbon sources. However when grown in defined medium with glucose as the primary carbon source, Delta ccpA mutants express high levels of Ldh1 compared to growth in media devoid of glucose. Thus, the actual consumption of glucose stimulates Ldh1 expression rather than direct CcpA interaction at P-ldh1.
更多
查看译文
关键词
cloning,glucose metabolism,isoenzymes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要