Synthesis and SAR of ⁹⁹mTc/Re-labeled small molecule prostate specific membrane antigen inhibitors with novel polar chelates.

Bioorganic & Medicinal Chemistry Letters(2013)

引用 79|浏览4
暂无评分
摘要
Prostate specific membrane antigen (PSMA) is recognized as an attractive molecular target for the development of radiopharmaceuticals to image and potentially treat metastatic prostate cancer. A series of novel 99mTc/Re-tricarbonyl radiolabeled PSMA inhibitors were therefore synthesized by the attachment of glutamate-urea-lysine (Glu-urea-Lys) and glutamate-urea-glutamate (Glu-urea-Glu) pharmacophore to single amino acid chelate (SAAC) where the SAAC ligand was either bis(pyridin-2-ylmethyl)amino (DPA), bis((1-methyl-1H-imidazol-2-yl)methyl)amino (NMI), bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino (CIM) or bis((1-(2-(bis(carboxymethyl)amino)-2-oxoethyl)-1H-imidazol-2-yl)methyl)amino (TIM). The in vitro binding affinity of the rhenium complexes was evaluated using PSMA-expressing human prostate cancer LNCaP cells. IC50 values ranged from 3.8±2 to >2000nM. A linker between the SAAC chelate and pharmacophore was required for high affinity binding. However, extending the length of the linker did not substantially improve binding. PSMA binding was also influenced by the nature of the SAAC chelate. One of the most potent compounds, 23b (IC50=4.8±2.7nM), was radiolabeled with technetium tricarbonyl ({99mTc(CO)3}+) to afford the {99mTc(CO)3}+ complex in excellent yield and high purity. This effort has led to the identification of a diverse series of promising high affinity {99mTc(CO)3}+ radiolabeled PSMA inhibitors.
更多
查看译文
关键词
Inhibitor,PSMA,Structure–activity relationships,Rhenium,Technetium,Polar chelates
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要