Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function.

BIOCHEMISTRY(2009)

引用 30|浏览7
暂无评分
摘要
Cardiac troponin T (cTnT) is a phosphoprotein that modulates cardiac muscle contraction through its extensive and diverse interactions with neighboring thin filament proteins. Its N-terminal half is the "glue" that anchors the troponin complex to tropomyosin-actin. Until now, studies aimed at investigating the role of the N-terminal tail region have not considered the effects of phosphorylation. To understand better the regulatory role of the N-terminal tail region of phosphorylated cTnT, we investigated the functional effects of N-terminal deletion (amino acids 1-91) and phosphorylation oil Ca(2+) dependence of myofilament isometric force production, isometric ATPase rate, and thin filament sliding speed. Chemomechanical profiles were assessed in detergent permeabilized fiber preparations where the native troponin (cTn) was exchanged with recombinant cTn engineered to contain modified cTnT (truncated, phosphorylated) in the presence of wild-type cTn1 and cTnC. Removal of the cTnT N-terminal amino acids 1-91 (cTnT-del) enhances myofilament responsiveness to nonsaturating Ca(2+) levels (the physiological range in cardiac myocytes). However, at saturating Ca(2+) levels, there is a reduction in isometric tension and ATPase rate. On one hand, phosphorylation of cTnT-del attenuates the sensitizing effect induced by truncation of the N-terminal tail, "resetting" myofilament Ca(2+) responsiveness back to control levels. On the other hand, it impairs isometric tension development and ATPase rate. Interestingly, phosphorylation of cTnT (cTnT-P) differentially regulates tension cost (all index of cross-bridge cycling rate): increased by cTn-del-P and decreased by intact cTn-wt-P. Like the isometric fiber data, sliding speed of thin filaments regulated by cTn-del is more sensitive to Ca(2+) compared with cTn-wt. Phosphorylation of cTnT (whether cTnT-del or -wt) depresses sliding speed and is associated with Ca(2+) desensitization of thin filament sliding speed.
更多
查看译文
关键词
n terminal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要