2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals.

NANOSCALE(2013)

引用 45|浏览13
暂无评分
摘要
The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain gamma-Fe2O3 spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small-angle X-ray scattering and scanning electron microscopy together with the experimentally determined values for the saturation magnetization and magnetic anisotropy of the nanoparticles, we show that MC simulations can reproduce the thickness-dependent magnetic behavior. The magnetic dipolar particle interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions.
更多
查看译文
关键词
magnetic anisotropy,ferromagnetic materials,nanoparticles,saturation magnetization,magnetic moments,monte carlo methods,materials chemistry,scanning electron microscopy,ferromagnetism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要