Angiotensin-converting enzyme inhibition curbs tyrosine nitration of mitochondrial proteins in the renal cortex during the early stage of diabetes mellitus in rats.

CLINICAL SCIENCE(2013)

引用 12|浏览3
暂无评分
摘要
Experiments were performed to evaluate the hypothesis that ACE (angiotensin-converting enzyme) inhibition (enalapril) suppresses 3-NT (3-nitrotyrosine) production in the renal cortex during the early stage of Type 1 DM (diabetes mellitus) in the rat. Enalapril was administered chronically for 2 weeks to subsets of STZ (streptozotocin)-induced DM and vehicle-treated sham rats. O-2(-) (superoxide anion) and NOx (nitrate + nitrite) levels were measured in the media bathing renal cortical slices after 90 min incubation in vitro. SOD (superoxide dismutase) activity and 3-NT content were measured in the renal cortex homogenate. Renal cortical nitrated protein was identified by proteomic analysis. Renal cortical production of O-2(-) and 3-NT was increased in DM rats; however, enalapril suppressed these changes. DM rats also exhibited elevated renal cortical NOx production and SOD activity, and these changes were magnified by enalapril treatment. 2-DE (two-dimensional gel electrophoresis)-based Western blotting revealed more than 20 spots with positive 3-NT immunoreactivity in the renal cortex of DM rats. Enalapril treatment blunted the DM-induced increase in tyrosine nitration of three proteins ACO2, GDH1 and MMSDH (aconitase 2, glutamate dehydrogenase 1 and methylmalonate-semialdehyde dehydrogenase), each of which resides in mitochondria. These data are consistent with enalapril preventing DM-induced tyrosine nitration of mitochondrial proteins by a mechanism involving suppression of oxidant production and enhancement of antioxidant capacity, including SOD activation.
更多
查看译文
关键词
diabetic nephropathy,mitochondrial proteins,nitric oxide,3-nitrotyrosine,oxidative stress,proteomic analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要