mFISH analysis of chromosome aberrations induced in vitro by α-particle radiation: examination of dose-response relationships.

RADIATION RESEARCH(2012)

引用 12|浏览5
暂无评分
摘要
Curwen, G. B., Tawn, E. J., Cadwell, K. K., Guyatt, L., Thompson, J. and Hill, M. A. mFISH Analysis of Chromosome Aberrations Induced In Vitro by alpha-Particle Radiation: Examination of Dose-Response Relationships. Radiat. Res. 178, 414-424 (2012). A multicolored FISH (mFISH) technique was used to characterize the cytogenetic damage associated with exposure to alpha-particle radiation with particular emphasis on the quality and quantity that is likely to be transmitted through cell division to descendant cells. Peripheral blood lymphocytes were irradiated in vitro with Pu-238 alpha particles with a range of mean doses up to 936 mGy and were cultured for 47 h. The dose responses for total aberrant cells, stable and unstable cells, and cells with one simple chromosome aberration and multiple chromosome aberrations were predominantly linear for doses that resulted in cell nuclei receiving a single alpha-particle traversal. However, there was a decrease per unit dose in aberrant cells of all types at higher doses because of cells increasingly receiving multiple traversals. The proportion of radiation-induced aberrant cells containing multiple aberrations ranged from 48 to 74% with little evidence of dose dependency. Ninety-one percent of all cells with multiple aberrations were classified as unstable. Resolving the chromosome rearrangements into simple categories resulted in a linear dose response for dicentrics of 24.9 +/- 3.3 x 10(-2) per Gy. The predominant aberration in stable transmissible cells was a single translocation with a dose response for predominantly single hit cell nuclei of 4.1 +/- 1.3 x 10(-2) per Gy. Thus, translocations are the most likely aberration to be observed in peripheral blood lymphocytes from individuals with incorporated alpha-emitting radionuclides resulting in long-term chronic exposure. (C) 2012 by Radiation Research Society
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要