Toward The Establishment Of Standardized In Vitro Tests For Lipid-Based Formulations. 2. The Effect Of Bile Salt Concentration And Drug Loading On The Performance Of Type I, Ii, Iiia, Iiib, And Iv Formulations During In Vitro Digestion

MOLECULAR PHARMACEUTICS(2012)

引用 109|浏览7
暂无评分
摘要
The LFCS Consortium was established to develop standardized in vitro tests for lipid-based formulations (LBFs) and to examine the utility of these tests to probe the fundamental mechanisms that underlie LBF performance. In this publication, the impact of bile salt (sodium taurodeoxycholate, NaTDC) concentration and drug loading on the ability of a range of representative LBFs to generate and sustain drug solubilization and supersaturation during in vitro digestion testing has been explored and a common driver of the potential for drug precipitation identified. Danazol was used as a model poorly water-soluble drug throughout. In general, increasing NaTDC concentrations increased the digestion of the most lipophilic LBFs and promoted lipid (and drug) trafficking from poorly dispersed oil phases to the aqueous colloidal phase (AP(DIGEST)). High NaTDC concentrations showed some capacity to reduce drug precipitation, although, at NaTDC concentrations >= 3 mM, NaTDC effects on either digestion or drug solubilization were modest. In contrast, increasing drug load had a marked impact on drug solubilization. For LBFs containing long-chain lipids, drug precipitation was limited even at drug loads approaching saturation in the formulation and concentrations of solubilized drug in AP(DIGEST) increased with increased drug load. For LBFs containing medium-chain lipids, however, significant precipitation was evident, especially at higher drug loads. Across all formulations a remarkably consistent trend emerged such that the likelihood of precipitation was almost entirely dependent on the maximum supersaturation ratio (SRM) attained on initiation of digestion. SRM defines the supersaturation "pressure" in the system and is calculated from the maximum attainable concentration in the AP(DIGEST) (assuming zero precipitation), divided by the solubility of the drug in the colloidal phases formed post digestion. For LBFs where phase separation of oil phases did not occur, a threshold value for SRM was evident, regardless of formulation composition and drug solubilization reduced markedly above SRM > 2.5. The threshold SRM may prove to be an effective tool in discriminating between LBFs based on performance.
更多
查看译文
关键词
poorly water-soluble drug, LFCS Consortium, lipid-based drug delivery systems, SEDDS, drug solubilization, in vitro digestion testing, solubility, bioavailability, in vitro models, precipitation, supersaturation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要