Modelling Of Dna Damage Induced By Energetic Electrons (100 Ev To 100 Kev)

RADIATION PROTECTION DOSIMETRY(2002)

引用 116|浏览7
暂无评分
摘要
Modelling and calculations are presented for the spectrum of initial DNA damage produced by 100 eV to 100 keV energetic electrons. Analysis of the initial spectrum of damage. based upon the source (direct energy deposition and reactions with diffusing OH radicals) and complexity of damage. indicates that tire majority of tire interactions cause no damage to DNA and any damage that does occur is most likely to be a simple single strand break (SSB). The fraction of complex damage for energetic electrons is lower than that induced by lock energy electrons and ultrasoft X rays but still represents an appreciable fraction (20-30%) of tire total double strand breaks (DSBs). Relative yields of strand breaks are investigated for dependence on the assumed energy deposition threshold and (in the probability of the hydroxyl radicals to produce a single strand break. The ratio of direct to indirect damage does not change significantly across the electron energy range investigated and the values lie well within tire experimental data. The direct energy deposition in DNA represents a larger proportion of tire damage although the contribution from the hydroxyl radicals is also substantial, both in terms of the absolute yield of the breaks and the complexity of the damage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要