AP-1 DNA binding activity regulates the cartilage tissue remodeling process following cyclic compression in vitro.

BIORHEOLOGY(2008)

引用 6|浏览2
暂无评分
摘要
Generating bioengineered cartilage yields tissue with physical qualities inferior to that of native tissue. Application of cyclic compression (30 min, 1 kPa, 1 Hz) to cartilage cells (chondrocytes) seeded on calcium polyphosphate substrates significantly increases the accumulation of collagens and proteoglycans by 24 hours, thus improving the tissue generated. The mechanism for this increase is not fully known but seems to follow a remodeling pathway of sequential catabolic and anabolic changes. The initial catabolic event involves increased transcription of matrix metalloproteinase (MMP)-3 and MMP-13 two hours after the end of cyclic compression. As MMP-3 and MMP-13 promoters contain activating protein-1 (AP-1) DNA binding sites, we investigated the effect of inhibiting DNA binding through the use of modified decoy oligodeoxynucleotides (ODN). Mechanical stimulation in the presence of the ODN blocked AP-1 DNA binding as detected by electrophoretic mobility shift assay and prevented the increased transcription of MMP-3 and MMP-13. As well the increased accumulation of collagens and proteoglycans by 24 hours in mechanically stimulated samples was prevented. The data suggests that the mechano-induction of MMP-3 and MMP-13 may be regulated at the AP-1 DNA binding site and that upregulation of these metalloproteases is a necessary component of the matrix remodeling initiated by cyclic compression.
更多
查看译文
关键词
Mechanical stimulation,decoy oligodeoxynucleotides,chondrocytes,tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要