NEK1 and DYNC2H1 are both involved in short rib polydactyly Majewski type but not in Beemer Langer cases.

JOURNAL OF MEDICAL GENETICS(2012)

引用 55|浏览13
暂无评分
摘要
Background The lethal short rib polydactyly syndromes (SRP type I-IV) are characterised by notably short ribs, short limbs, polydactyly, multiple anomalies of major organs, and autosomal recessive mode of inheritance. Among them, SRP type II (Majewski; MIM 263520) is characterised by short ovoid tibiae or tibial agenesis and is radiographically closely related to SRP type IV (Beemer-Langer; MIM 269860) which is distinguished by bowed radii and ulnae and relatively well tubulated tibiae. NEK1 mutations have been recently identified in SRP type II. Double heterozygosity for mutations in both NEK1 and DYNC2H1 in one SRP type II case supported possible digenic diallelic inheritance. Methods The aim of this study was to screen DYNC2H1 and NEK1 in 13 SRP type II cases and seven SRP type IV cases. It was not possible to screen DYNC2H1 in two patients due to insufficient amount of DNA. Results The study identified homozygous NEK1 mutations in 5/13 SRP type II and compound heterozygous DYNC2H1 mutations in 4/12 cases. Finally, NEK1 and DYNC2H1 were excluded in 3/12 SRP type II and in all SRP type IV cases. The main difference between the mutation positive SRP type II group and the mutation negative SRP type II group was the presence of holoprosencephaly and polymycrogyria in the mutation negative group. Conclusion This study confirms that NEK1 is one gene causing SRP type II but also reports mutations in DYNC2H1, expanding the phenotypic spectrum of DYNC2H1 mutations. The exclusion of NEK1 and DYNC2H1 in 3/12 SRP type II and in all SRP type IV cases further support genetic heterogeneity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要