Chemotherapy targeting by DNA capture in viral protein particles.

NANOMEDICINE(2012)

引用 15|浏览27
暂无评分
摘要
Aim: This study tests the hypothesis that DNA intercalation and electrophilic interactions can be exploited to noncovalently assemble doxorubicin in a viral protein nanoparticle designed to target and penetrate tumor cells through ligand-directed delivery. We further test whether this new paradigm of doxorubicin targeting shows therapeutic efficacy and safety in vitro and in vivo. Materials & methods: We tested serum stability, tumor targeting and therapeutic efficacy in vitro and in vivo using biochemical, microscopy and cytotoxicity assays. Results: Self-assembly formed approximately 10-nm diameter serum-stable nanoparticles that can target and ablate HER2+ tumors at >10x lower dose compared with untargeted doxorubicin, while sparing the heart after intravenous delivery. The targeted nanoparticle tested here allows doxorubicin potency to remain unaltered during assembly, transport and release into target cells, while avoiding peripheral tissue damage and enabling lower, and thus safer, drug dose for tumor killing. Conclusion: This nanoparticle may be an improved alternative to chemical conjugates and signal-blocking antibodies for tumor-targeted treatment.
更多
查看译文
关键词
doxorubicin,HER,herdox,nanoparticle,noncovalent,penton base,self-assembly,tumor targeting,viral capsid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要