Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study.

DIABETES CARE(2012)

引用 166|浏览3
暂无评分
摘要
OBJECTIVE-We aimed to determine the corneal confocal microscopy (CCM) parameter that best identifies diabetic sensorimotor polyneuropathy (DSP) in type 1 diabetes and to describe its performance characteristics. RESEARCH DESIGN AND METHODS-Concurrent with clinical and electrophysiological examination for classification of DSP, CCM was performed on 89 type 1 diabetic and 64 healthy subjects to determine corneal nerve fiber length (CNFL), density, tortuosity, and branch density. Area under the curve (AUC) and optimal thresholds for DSP identification in those with diabetes were determined by receiver operating characteristic (ROC) curve analysis. RESULTS-DSP was present in 33 (37%) subjects. With the exception of tortuosity, CCM parameters were significantly lower in DSP case subjects. In ROC curve analysis, AUC was greatest for CNFL (0.88) compared with fiber density (0.84, P = 0.0001), branch density (0.73, P < 0.0001), and tortuosity (0.55, P < 0.0001). The threshold value that optimized sensitivity and specificity for ruling in DSP was a CNFL of <= 14.0 mm/mm(2) (sensitivity 85%, specificity 84%), associated with positive and negative likelihood ratios of 5.3 and 0.18. An alternate approach that used separate threshold values maximized sensitivity (threshold value >= 15.8 mm/mm(2), sensitivity 91%, negative likelihood ratio 0.16) and specificity (<= 11.5 mm/mm(2), specificity 93%, positive likelihood ratio 8.5). CONCLUSIONS-Among CCM parameters, CNFL best discriminated DSP cases from control subjects. A single threshold offers clinically acceptable operating characteristics, although a strategy that uses separate thresholds to respectively rule in and rule out DSP has excellent performance while minimizing unclassified subjects. We hypothesize that values between these thresholds indicate incipient nerve injury that represents those individuals at future neuropathy risk.
更多
查看译文
关键词
young adult,cross sectional studies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要